Notes

Chapecoderins A-C, New Labdane-Derived Diterpenoids from Echinodorus macrophyllus

J un’ichi Kobayashi,*,† Mitsuhiro Sekiguchi, ${ }^{\dagger}$ Hideyuki Shigemori, ${ }^{\dagger}$ and Ayumi Ohsaki*,†
Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, J apan, and
Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, J apan

Received October 18, 1999

A new seco-labdane-type diterpenoid, chapecoderin A (1), and two new rearranged labdane-type diterpenoids, chapecoderins B (2) and C (3), were isolated from the leaves of the Brazilian medicinal plant Echinodorus macrophyllus ("Chapéu-de-couro"), and their structures and relative stereochemistry were elucidated by spectroscopic data. Chapecoderins A-C (1-3) possess in common an α, β-unsaturated γ-lactone ring in the side chain.

Brazilian medicinal plants have proven to be a rich source of compounds that might be useful for the development of new pharmaceutical agents. ${ }^{1}$ In our search for bioactive compounds from Brazilian medicinal plants, a new seco-labdane-type diterpenoid, chapecoderin A (1), and two new rearranged labdane-type diterpenoids, chapecoderins B (2) and C (3), with an α, β-unsaturated γ-lactone ring in the side chain, were isolated from the leaves of Echinodorus macrophyllus (K unth) Micheli (Alismataceae). This plant is known in Brazil as "Chapéu-de-couro" and is used to treat difficulties in urination, hepatitis, and rheumatism. In this paper we describe the isolation and structure elucidation of compounds 1-3.

The leaves of the Brazilian medicinal plant E. macrophyllus were extracted with MeOH , and the extracts were partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The EtOAc-soluble portions were subjected to passage over a Si gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 98: 2\right)$ and then over a reversed-phase column ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 80: 20$), to afford chapecoderins $\mathrm{A}(\mathbf{1})$, $B(2)$, and C (3).

The molecular formula, $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$, of chapecoderin $\mathrm{A}(\mathbf{1})$ was established by HREIMS [m/z $334.2130\left(\mathrm{M}^{+}\right), \Delta-1.4$ mmu . The IR spectrum suggested the presence of unsaturated lactone carbonyl (1752 and $1655 \mathrm{~cm}^{-1}$) and ketone carbonyl ($1701 \mathrm{~cm}^{-1}$) groups. The gross structure of 1 was deduced from detailed analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Table 1) aided with 2D NMR experiments (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, and HMBC). The ${ }^{13} \mathrm{C}$ NMR data indicated that the mol ecule possessed two ketone carbonyls, one unsaturated ester carbonyl, onetrisubstituted olefin, two sp ${ }^{3}$ quaternary carbons, eight methylenes (one of them bearing an oxygen atom), one methine, and four methyl groups. Because four out of six unsaturations were thus accounted for, it was concluded that 1 contains two rings. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum reveal ed connectivities of C-1 to C-3, C-5 to C-7, $\mathrm{C}-11$ to $\mathrm{C}-12$, and $\mathrm{C}-14$ to $\mathrm{C}-15$. HMBC correlations (Figure 1) of $\mathrm{H}_{3}-18$ and $\mathrm{H}_{3}-19$ to $\mathrm{C}-3, \mathrm{C}-4$, and $\mathrm{C}-5$ and of $\mathrm{H}_{3}-20$ to

[^0]Table 1. ${ }^{1} \mathrm{H}$ NMR Data of Chapecoderins A-C (1-3)

position	$\mathbf{1}^{\text {a }}$ (δ, ppm)	$\mathbf{2}^{\mathrm{b}}$ (δ, ppm)	$3^{\text {b }}$ (δ, ppm)
1 a	1.56 (m)	2.08 (dd, 5.0, 12.7)	1.70 (td, 3.5, 14.0)
b	1.36 (m)	1.40 (m)	1.24 (td, 3.5, 14.0)
2 a	1.70 (m)	1.59 (m)	1.59 (m)
b	1.60 (m)		1.48 (m)
3 a	1.48 (m)	1.40 (m)	1.37 (m)
b	1.42 (m)	1.17 (m)	1.06 (m)
5	1.72 (m)	2.32 (dd, 8.1, 12.9)	1.34 (dd, 6.2, 12.0)
6a	1.32 (m)	1.55 (m)	2.11 (dd, 12.0, 14.0)
b	1.25 (m)	1.45 (m)	2.09 (dd, 6.2, 14.0)
7	2.42 (dd, 8.2, 8.2) ${ }^{\text {c }}$	2.60 (dd, 5.0, 12.2)	
11a	2.86 (td, 7.2, 18.0)	1.82 (m)	2.94 (dt, 5.1, 16.7)
b	2.74 (td, 7.2, 18.0)	1.80 (m)	2.36 (dt, 4.5, 16.7)
12a	2.56 (t, 7.2) ${ }^{\text {c }}$	2.52 (td, 5.0, 7.0)	2.69 (m)
b		2.34 (m)	2.50 (m)
14	7.16 (s)	5.94 (s)	6.36 (s)
15	4.75 (s) ${ }^{\text {c }}$	3.80 (s) ${ }^{\text {c }}$	3.85 (s) ${ }^{\text {c }}$
17	2.02 (s) ${ }^{\text {d }}$	1.84 (s) ${ }^{\text {d }}$	1.94 (s) ${ }^{\text {d }}$
18	0.91 (s) ${ }^{\text {d }}$	0.88 (s) ${ }^{\text {d }}$	0.92 (s) ${ }^{\text {d }}$
19	0.92 (s) ${ }^{\text {d }}$	0.87 (s) ${ }^{\text {d }}$	0.88 (s) ${ }^{\text {d }}$
20	1.21 (s) ${ }^{\text {d }}$	0.76 (s) ${ }^{\text {d }}$	0.78 (s) ${ }^{\text {d }}$

${ }^{\mathrm{a}} \mathrm{In} \mathrm{CDCl}_{3} .{ }^{\mathrm{b}} \operatorname{In} \mathrm{C}_{6} \mathrm{D}_{6}{ }^{\mathrm{c}} 2 \mathrm{H} .{ }^{\mathrm{d}} 3 \mathrm{H}$.

2

Figure 1. Selected 2D NMR correlations of chapecoderins A (1) and B (2).
C-1, C-5, and C-10 revealed the presence of a cyclohexane ring, which possessed $\mathrm{Me}-18$ and $\mathrm{Me}-19$ attached to $\mathrm{C}-4$ and $\mathrm{Me}-20$ at $\mathrm{C}-10$. HMBC correlations of $\mathrm{H}_{3}-17$ and $\mathrm{H}_{2}-7$ to $\mathrm{C}-8$ (δ_{C} 208.0) indicated the connectivity of $\mathrm{Me}-17$ to $\mathrm{C}-7$ through a ketone carbonyl (C-8). Cross-peaks of $\mathrm{H}_{3}-20$ and H-11a to C-9 ($\delta_{\mathrm{C}} 215.0$) in the HMBC spectrum implied

1

2

the presence of a ketone carbonyl (C-9) between $\mathrm{C}-10$ and $\mathrm{C}-11$. HMBC correlations of $\mathrm{H}_{2}-15$ to $\mathrm{C}-13, \mathrm{H}-14$ to $\mathrm{C}-13$ and $\mathrm{C}-16$, and $\mathrm{H}_{2}-12$ to $\mathrm{C}-13$ and the unsaturations from the elemental formula revealed the presence of a γ-lactone ring ($\mathrm{C}-13$ through $\mathrm{C}-16$ and $\mathrm{O}-15$) connected to $\mathrm{C}-12$. Thus, the gross structure of chapecoderin A was elucidated as 1. NOESY correlations of $\mathrm{H}_{3}-20$ to $\mathrm{H}-2 \mathrm{a}$ and $\mathrm{H}_{3}-18$, and $\mathrm{H}-5$ to $\mathrm{H}-1 \mathrm{~b}, \mathrm{H}-3 \mathrm{~b}$, and $\mathrm{H}_{3}-19$ indicated a β-orientation of Me 20, an α-orientation of $\mathrm{H}-5$, and a trans relationship between $\mathrm{Me}-20$ and $\mathrm{H}-5$ (Figure 2). A chair conformation of the cyclohexane ring was elucidated from NOESY correlations of $\mathrm{H}-3 b$ to $\mathrm{H}-1 \mathrm{~b}$ and $\mathrm{H}-5$ and of $\mathrm{H}_{3}-18$ to H 2 a . Thus, the relative stereochemistry of chapecoderin A was assigned as 1.

Chapecoderin B (2) showed the molecular ion peak at $\mathrm{m} / \mathrm{z} 334\left(\mathrm{M}^{+}\right)$in the EIMS. HREIMS analysis revealed the
molecular formula to be $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}\left[\mathrm{~m} / \mathrm{z} 334.2119\left(\mathrm{M}^{+}\right)\right.$, Δ -2.5 mmu . IR absorptions implied that 2 possessed hydroxyl ($3426 \mathrm{~cm}^{-1}$), unsaturated lactone (1745 and 1647 cm^{-1}), and ketone ($1730 \mathrm{~cm}^{-1}$) groups. The ${ }^{1} \mathrm{H}$ NMR spectrum showed a hydroxyl proton ($\delta_{\mathrm{H}} 5.52 \mathrm{~s}$) exchangeable with $\mathrm{D}_{2} \mathrm{O}$. Analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data and the HMQC spectrum provided one ketone carbonyl, one ester carbonyl, one trisubstituted olefin, one oxygenated quaternary carbon, two sp^{3} quaternary carbons, two methines, seven methylenes (one of them bearing an oxygen atom), and four methyl groups. Detailed analysis of ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ COSY spectrum implied connectivities of $\mathrm{C}-1$ to $\mathrm{C}-3$, C-5 to C-7, C-11 to C-12, and C-14 to C-15. In the HMBC spectrum $\mathrm{H}_{3}-18$ and $\mathrm{H}_{3}-19$ showed long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations with $\mathrm{C}-3, \mathrm{C}-4$, and $\mathrm{C}-5$, and $\mathrm{H}_{3}-20$ showed cross-peaks with C-1, C-5, and C-10, indicating the presence of a cyclohexane ring with $\mathrm{Me}-18$ and $\mathrm{Me}-19$ affixed to $\mathrm{C}-4$ and $\mathrm{Me}-20$ at $\mathrm{C}-10$ (Figure 1). HMBC correlations of $\mathrm{H}_{3}-20$ to $\mathrm{C}-9$ ($\delta_{\mathrm{C}} 84.7$); OH-9 to C-7, C-9, and C-10; and $\mathrm{H}_{3}-17$ to $\mathrm{C}-7$ and $\mathrm{C}-8\left(\delta_{\mathrm{C}} 215.0\right)$ revealed that the presence of a cyclopentane ring with a hydroxyl group at C-9 and an acetyl group at C-7. HMBC correlations of $\mathrm{H}_{2}-15$ to $\mathrm{C}-13$, $\mathrm{H}-14$ to $\mathrm{C}-13$ and $\mathrm{C}-16, \mathrm{H}_{2}-12$ to $\mathrm{C}-13$, and $\mathrm{H}_{2}-11$ to $\mathrm{C}-9$ revealed the presence of a γ-lactone ring ($\mathrm{C}-13$ through $\mathrm{C}-16$ and $\mathrm{O}-15)$ connected to $\mathrm{C}-12$ and the connection between C-9 and C-11. Thus, the gross structure of chapecoderin B was elucidated as 2. NOESY correlations of $\mathrm{H}_{3}-$ 20 to $\mathrm{H}-2$ a and $\mathrm{H}_{3}-18$, and $\mathrm{H}-5$ to $\mathrm{H}-1 \mathrm{~b}$ and $\mathrm{H}-3$ b indicated a chair conformation of ring A , a β-orientation of $\mathrm{Me}-20$ and α-orientation of $\mathrm{H}-5$, and a trans relationship between rings A and B, while the correlations of $\mathrm{H}-7$ to $\mathrm{H}_{3}-20, \mathrm{OH}-9$ to $\mathrm{H}-5$, and $\mathrm{H}-11$ a to $\mathrm{H}_{3}-20$ indicated a β-orientation of $\mathrm{H}-7$ and an α-orientation of OH-9 (Figure 2). Thus, the relative stereochemistry of chapecoderin B was elucidated as 2.
The molecular formula, $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$, of chapecoderin C (3) was established by HREIMS [m/z $316.2053\left(\mathrm{M}^{+}\right), \Delta+1.5$ mmu , indicating that 3 was a dehydrated form of 2. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 with those of 2 revealed that a carbinol ($\delta_{\mathrm{H}} 5.52, \mathrm{OH}-9 ; \delta_{\mathrm{C}} 84.7, \mathrm{C}-9$) and a methine ($\delta_{\mathrm{H}} 2.60, \mathrm{H}-7$; $\delta_{\mathrm{C}} 53.7, \mathrm{C}-7$) in 2 were

1

2

3

Figure 2. NOESY correlations of chapecoderins $A-C(\mathbf{1}-\mathbf{3})$.

Table 2. ${ }^{13} \mathrm{C}$ NMR Data of Chapecoderins $\mathrm{A}-\mathrm{C}(1-3)$

position	$\mathbf{1}^{\mathrm{a}}(\delta, \mathrm{ppm})$	$\mathbf{2}^{\mathrm{b}}(\delta, \mathrm{ppm})$	$\mathbf{3}^{\mathrm{b}}(\delta, \mathrm{ppm})$
1	37.5	31.0	33.5
2	18.5	20.0	19.0
3	41.5	41.2	41.5
4	34.5	33.0	33.0
5	48.0	51.3	57.0
6	22.8	27.0	30.5
7	30.0	53.7	123.0
8	208.0	215.0	197.0
9	215.0	84.7	136.0
10	53.5	49.3	50.0
11	35.0	36.0	25.5
12	20.7	22.0	24.5
13	133.0	134.0	134.0
14	146.5	142.0	143.5
15	70.3	69.1	69.0
16	175.0	173.0	173.0
17	30.5	31.0	29.5
18	22.8	21.0	20.5
19	33.8	33.0	32.5
20	19.5	16.2	16.3

${ }^{\mathrm{a}} \mathrm{In} \mathrm{CDCl}_{3}{ }^{\mathrm{b}} \operatorname{In} \mathrm{C}_{6} \mathrm{D}_{6}$.
replaced by a tetrasubstituted olefin ($\delta_{\mathrm{C}} 123.0$ and 136.0, C-7 and C-9, respectively) in 3. The presence of the tetrasubstituted olefin (C-7 and C-9) was also supported by HMBC correlations of H-11a to C-7 and H-6a to C-9. The UV absorption at 255 nm indicated the presence of an unsaturated ketone (C-9, C-7, C-8, and O-8). NOESY correlations of $\mathrm{H}_{3}-20$ to $\mathrm{H}-2 \mathrm{a}$ and $\mathrm{H}_{3}-18$ and of $\mathrm{H}-5$ to $\mathrm{H}-1$ b and $\mathrm{H}-3 \mathrm{~b}$ indicated the β-orientation of $\mathrm{Me}-20$ and the α-orientation of H-5 (Figure 2). Thus, the relative stereochemistry of chapecoderin C was assigned as 3.

Chapecoderins A-C (1-3) are new labdane-derived diterpenoids isolated in the present investigation from the Brazilian medicinal plant E. macrophyllus, although some 8,9-seco-labdane-type and rearranged labdane-type diterpenoids have been obtained from the liverwort J ungermannia infusca, ${ }^{2}$ and the higher plants Gypothamnium pinifolium ${ }^{3}$ and Galeopsis angustifolia. ${ }^{4}$ Biogenetically, chapecoderin C (3) may be derived from chapecoderin A (1) through intramol ecular aldol condensation between C-7 and C-9 to give chapecoderin B(2) followed by dehydration at C-7 and C-9. Chapecoderins B (2) and C (3) exhibited cytotoxicity against murine lymphoma L1210 cells with IC_{50} values of 7.2 and $6.0 \mu \mathrm{~g} / \mathrm{mL}$, respectively, while chapecoderin A (1) showed no significant inhibitory activity ($\mathrm{C}_{50}>10 \mu \mathrm{~g} / \mathrm{mL}$).

Experimental Section

General Experimental Procedures. The 7.26 and 7.20 ppm resonances of residual CDCl_{3} and $\mathrm{C}_{6} \mathrm{D}_{6}$, respectively, and 77.0 and 128.0 ppm of CDCl_{3} and $\mathrm{C}_{6} \mathrm{D}_{6}$, respectively, were used
as internal references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively. EIMS were obtained operating at 70 eV .

Plant Material. The leaves of E. macrophyllus ("Chapéu-de-couro") was purchased in São Paulo, Brazil. The plant was identified by Dr. T. Nakasumi (Instituto de Pesouisas de Plantas Medicinais do Brasil), and a voucher specimen has been deposited at Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University.

Extraction and Separation. The leaves were extracted with $\mathrm{MeOH}(500 \mathrm{~mL} \times 2)$, and the extracts were partitioned between EtOAc ($50 \mathrm{~mL} \times 2$) and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The combined EtOAc-soluble portion (558 mg) was subjected to Si gel column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 98: 2\right)$ to afford a fraction (67 mg), which was partitioned between hexane ($10 \mathrm{~mL} \times 3$) and $90 \% \mathrm{MeOH}$. The MeOH -soluble materials were purified by passage over C_{18} HPLC (Develosil ODS-HG-5, Nomura Co. Ltd., Seto, J apan; $10 \times 250 \mathrm{~mm}$, flow rate $2.5 \mathrm{~mL} / \mathrm{min}$, eluent $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 80: 20$, UV detection at 254 nm) to give chapecoderins A (1, 1.7 mg), B ($\mathbf{2}, 2.2 \mathrm{mg}$), and C ($\mathbf{3}, 0.8 \mathrm{mg}$).

Chapecoderin A (1): a colorless amorphous solid; $[\alpha]^{23} \mathrm{D}$ $+5.5^{\circ}$ (c 0.86, CHCl_{3}); UV (MeOH) $\lambda_{\text {max }} 210(\epsilon 6200) \mathrm{nm} ;$ IR (KBr) $\nu_{\max } 1752,1701,1655,1636 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Tables 1 and 2); EIMS m/z 334 [M ${ }^{+}$]; HREIMS m/z 334.2130 $\left[M^{+}\right]$(calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}, 334.2144$).

Chapecoderin B (2): a colorless amorphous solid; $[\alpha]^{23}{ }_{D}$ -4.6° (c 1.1, CHCl_{3}); UV (MeOH) $\lambda_{\text {max }} 210(\epsilon 6400) \mathrm{nm}$; IR (KBr) $v_{\max } 3426,1745,1730$ (sh), $1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Tables 1 and 2); EIMS m/z 334 [M ${ }^{+}$]; HREIMS m/z 334.2119 $\left[M^{+}\right]$(calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}, 334.2144$).

Chapecoderin C (3): a colorless amorphous solid; $[\alpha]^{23}{ }_{D}$ $+5.7^{\circ}$ (c $0.31, \mathrm{CHCl}_{3}$); UV (MeOH) $\lambda_{\text {max }} 208$ ($\epsilon 5200$) and 255 (ϵ 2900) nm; IR (KBr) $v_{\text {max }} 1746,1645 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Tables 1 and 2); EIMS m/z 316 [M+]; HREIMS m/z 316.2053 $\left[M^{+}\right]$(calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}, 316.2038$).

Acknowledgment. Wethank Dr. T. Nakasumi (Instituto de Pesouisas dePlantas Medicinais do Brasil) for identification of this plant. This work was partly supported by a Grant-inAid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of J apan.

References and Notes

(1) Ohsaki, A.; Takashima, J.; Chiba, N.; Kawamura, M. Bioorg. Med. Chem. Lett. 1999, 9, 1109-1112.
(2) Nagashima, F.; Suzuki, M.; Takaoka, S.; Asakawa, Y. Tetrahedron 1999, 55, 9117-9132.
(3) Zdero, C.: Bohlmann, F.; Niemeyer, H. M. Phytochemistry 1988, 27, 2953-2959.
(4) Pérez-Sirvent, L.; Rodríguez, B.; Savona, G.; Servettaz, O. Phytochemistry 1983, 22, 527-530.
NP9905261

[^0]: * To whom correspondence should be addressed. Tel.: +81-11-706-4985. Fax: +81-11-706-4989. E-mail: jkobay@pharm.hokudai.ac.jp (J . K obayashi). Tel.: +81-3-5280-8153. Fax: +81-3-5280-8005. E-mail: a-ohsaki@ i-mde.tmd.ac.jp (A. Ohsaki).
 ${ }^{\dagger}$ Hokkaido University.
 \# Tokyo Medical and Dental University.

